

特点

- ▶ 内置600V高压MOSFET
- > TRUEC²闭环恒流控制技术
- ▶ 3%系统恒流精度
- > 采样电阻开路、短路保护
- ▶ 输出过流、短路保护
- ▶ 主电感短路保护
- ▶ 输出过压保护
- ▶ 过温保护
- ➤ DIP8封装

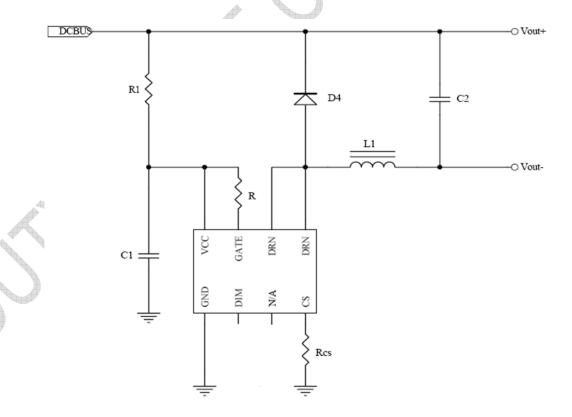
应用

LED 日光灯管 T5/T8/T10···

LED 球泡灯 E14/E27/PAR30/PAR38···

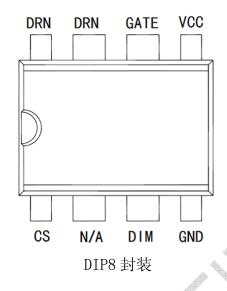
LED 吸顶灯

LED 路灯


• • •

概述

DU8633是一款连续电流工作模式的降压式恒流控制器,专用于驱动小功率LED照明应用。采用独特的闭环恒流控制专利一**TRUEC**²技术,可在宽松的外围电感参数条件下实现高精度的输出电流,确保批量生产时LED灯具亮度的一致性。


LED照明驱动环境很复杂,市电输入电压变化,输出LED数量、正向压降的变化,环境温度变化导致的器件参数变化,器件参数本身的离散性分布等等,这些都直接或间接的影响了LED电流的精度,基于以上甚至更多的考虑,DU8633提供了外部可编程的,高精度的输出电流控制方案,只需要±1%精度的检测电阻,和不太精确的滤波电感,再加上少量的外围器件,实现3%系统恒流精度。

典型应用图

引脚封装

引脚描述

引脚编号	引脚名称	描述
1	cs	电流采样端
2	N/A	空脚
3	DIM	模拟/数字调光端
4	GND	芯片接地端
5	VCC	芯片电源端
6	GATE	内置高压 MOSFET 栅极
7	DRN	内置 600V 高压 MOSFET 漏极
8	DRN	内置 600V 高压 MOSFET 漏极

定购信息

定购型号	温度范围	封装	包装
DU8633	-40℃~105℃	DIP8	50 颗/管 管装

极限参数(1)(2)

符号	脚位	描述	范围	单位
	1,3	模拟输入/输出引脚	-0.3~6	V
Ivcc	5	VCC 最大钳位电流	10	mA
θ_{JA}		热阻(结温-环境)	75	.c\M
Tj		最大工作结温	-40~150	°C
Tstg		存储温度范围	-65~150	$^{\circ}$
	6	GATE 脚最大电压范围	-0.3~25	V

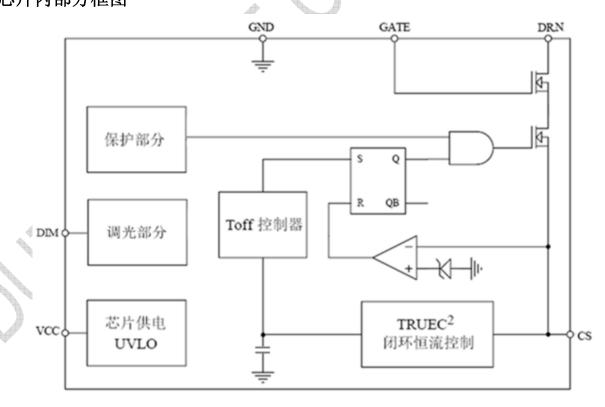
说明:

- (1) 最大极限值是指超出该工作范围,芯片可能损坏。电气参数定义了器件在工作范围内并且在保证特定性能指标的测试 条件下的直流和交流电参数规范。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值反映了器件性能。
- (2) 无特别说明,所有的电压以GND作为参考。

电气参数

(无特别说明外, VCC=12V, Ta=25℃)

符号	参数	测试条件	最小值	典型值	最大值	单位	
电源供电部分							
VCC	VCC 钳位电压	I _{VCC} <10mA		12		V	
VCC _{ON}	芯片开启工作电压	VCC 上升	7	8.5	10	V	
VCC _{OFF}	芯片美断电压	VCC 下降		6		V	
I _{ST}	启动电流	VCC <vcc<sub>ON</vcc<sub>		150		uA	
I _{OP}	工作电流	Fsw=100kHz		200		uA	
电流采样							
V _{REF}	平均电流基准		195	200	205	mV	
V _{CS_PK}	CS峰值电流基准			300		mV	
T _{LEB}	电流采样消隐时间			450		ns	
T _{DELAY}	关断延时时间				150	ns	
振荡器							
T _{OFF_MAX}	最大美断时间			180		us	
T _{OFF_MIN}	最小关断时间			3		us	
T _{ON_MAX}	最大开通时间			20		us	



电气参数 (续)

(无特别说明外, VCC=12V, Ta=25℃)

符号	参数		1			1	
	少 数	测试条件	最小值	典型值	最大值	单位	
调光部分							
V _{DIM_H}	PWM 高电平门限	V _{DIM} 上升		2.5		V	
V_{DIM_L}	PWM 低电平门限	V _{DIM} 下降		0.5		V	
V _{DIM_ANA}	模拟调光范围		0.7		2.5	V	
R _{DIM_UP}	DIM 脚上位电阻			200		kΩ	
MOSFET 参数							
R _{DSON}	内部开关管导通电阻			5		Ω	
V_{DS_BD}	内部开关管最大耐压	4	600			V	
过温保护							
T _{SD}	过热关断温度			150		${\mathbb C}$	
Hy_ _{TD}	过热保护迟滞			35		$^{\circ}$	

芯片内部方框图

应用信息

DU8633是一款连续电流工作模式的降压式恒流控制器,内置2A/600V高压MOSFET,专用于驱动小功率LED照明应用。

启动与供电

在上电后,母线电压通过启动电阻给VCC引脚的电容充电,直到VCC电压上升到启动阈值电压后,芯片启动工作,VCC的迟滞电压为2V。DU8633内置12V稳压管。由于芯片的典型工作电流只有200uA,因此,无需专门的供电电路,利用启动电阻就可以直接供电,可减少系统成本,提高系统效率。

恒流控制

DU8633 采用独特的闭环恒流控制专利一**TRUEC**² 技术,可在宽输入电压、输出电压以及电感参数条件下实现高精度的输出电流,确保应用和批量生产时 LED 灯具亮度的一致性。

其输出电流为:

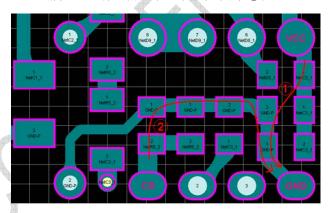
$$I_{LED} = \frac{V_{REF}}{R_{CS}} = \frac{0.2}{R_{CS}}$$

V_{REF}为平均电流基准 Rcs为电流采样电阻

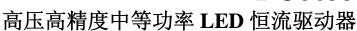
保护功能

DU8633 集成了多重保护功能,以确保 LED 灯具工作 稳定可靠。

输出短路: DU8633 在输出短路的情况下,依然可以 实现很好的恒流特性:

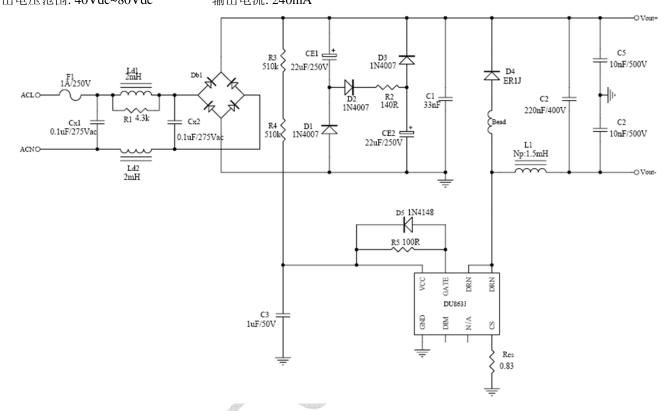

采样电阻开/短路: 当采样电阻出现开路或短路的情况,DU8633 会立即启动保护功能;

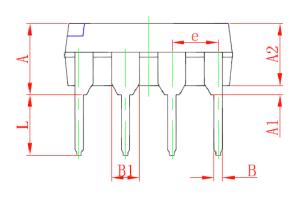
过温: 当芯片结温超过 150℃时,芯片会立即进入 过温保护,直到结温小于 120℃后,自动重启。

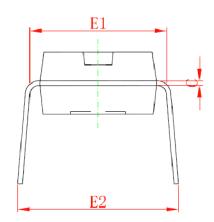

Layout 说明

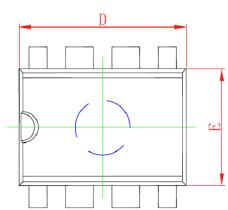
Layout 时,需要注意以下几点:

- 1. Vcc 旁路及供电电容回路应尽量小,如图中①;
- 2. CS 脚 Rcs 的回路应尽量小,如图中②;


更多设计方法,请参考:《DU8633设计工具》


应用案例 1 (10~20 串/12 并)


输入电压范围: 180Vac~264Vac 功率因数: 0.9(PPFC) 输出电压范围: 40Vdc~80Vdc 输出电流: 240mA



DIP8 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
С	0. 204	0. 360	0. 008	0. 014	
D	9. 000	9. 400	0. 354	0. 370	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
е	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	